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SUMMARY 

This paper presents the parallelization aspects of a solution method for the fully coupled 3D compressible 
Navier-Stokes equations. The algorithmic thrust of the approach, embedded in a finite element code 
NS3D. is the linearization of the governing equations through Newton methods, followed by a fully coupled 
solution of velocities and pressure at each non-linear iteration by preconditioned conjugate gradient-like 
iterative algorithms. For the matrix assembly, as well as for the linear equation solver, efficient coarse-grain 
parallel schemes have been developed for shared memory machines, as well as for networks of workstations, 
with a moderate number of processors. The parallel iterative schemes, in particular, circumvent some of 
the difficulties associated with domain decomposition methods, such as geometry bookkeeping and the 
sometimes drastic convergence slow-down of partitioned non-linear problems. 
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1. INTRODUCTION 

The fully-coupled solution of the Navier-Stokes equations is an attractive approach. When 
embedded in a Newton algorithm for the overall non-linear problem, its convergence character- 
istics are hard to match. The approach, however, yields large banded and non-symmetric, 
non-positive definite systems of linear equations that need to be solved at each non-linear step. 
The equation solver in a classical fully-coupled finite element approach can consume between 
80%-90% of the overall solution time. Its parallelization is therefore seen as the key to the 
success of any parallel finite element methodology. Solvers for such large-scale systems, originally 
developed exclusively for supercomputers, can now be contemplated on workstations, as 
architecture, processor speed and memory size have significantly evolved. 

Preconditioning techniques have also come of age and are now widely used to guarantee and 
accelerate convergence of such iterative solvers.'.' In particular, preconditioners based on an 
incomplete factorization of the Jacobian matrix yield a good acceleration of iterative solvers3 
for a wide range of problems while being easy to generate and use. If the factors are constrained 
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to have the same sparsity pattern as the original matrix, one obtains the simple but powerful 
incomplete LU preconditioner ILU(O), originally proposed by Meijernik and van der Vorst4 
to accelerate the resolution of symmetric, positive definite linear systems by the conjugate 
gradient method. Unfortunately, both the factorization and triangular system solution steps in 
such preconditioners are essentially sequential processes. Thus for large-scale solutions on 
parallel computers, ILU(0) preconditioners are less attractive than more easily parallelizable and 
vectorizable ones such as relaxation techniques, diagonal preconditioners or element-by-element 
factorization schemes.’ 

In this paper a block-diagonal preconditioner that can be easily parallelized on coarse-grain 
architectures is proposed. The numerical results show that it is suitable for parallel computations 
on a moderate number n of processors, i.e. n zz O(10). Knowing n, the system matrix A is 
partitioned into n x n blocks. Solely for the purpose of defining the preconditioning matrix, A 
is approximated to 2 [ n ] ,  keeping only the non-zero coefficients lying on its diagonal blocks. 
With a suitable nodal reordering, M [ n ] ,  the incomplete ILU(0) factorization of A[n], can be 
shown to be an effective preconditioner for iterative solvers such as the generalized minimum 
residual’ (GMRES) and conjugate gradient squared’ (CGS). Because of its strictly diagonal 
block structure, it is possible to parallelize both the factoriiation and triangular system solution 
steps associated with mn], the truncated preconditioning matrix, without losing the robustness 
of the often finicky iterative algorithms. 

Therefore one can see that the parallelization scheme is based on two steps: first, a partition 
into blocks of the system matrix A based only on its sparsity structure (and not on the 
geometry of the problem as in domain decomposition methods); second, to define the pre- 
conditioning matrix, an approximation of the global matrix into a block-diagonal one, followed 
by an ILU(0) factorization of the latter. A major feature of such a parallelization scheme is that 
it offers the advantages of domain decomposition methods while overcoming their bookkeeping 
and slow-down hurdles. 

The methodology of efficient parallelization of such iterative solvers on shared memory parallel 
workstations is studied here in the framework of a fully parallel approach to viscous flow 
problems. 

In the following sections the governing equations, discretization method and a hybrid artificial 
viscosity algorithm, necessary for obtaining stable solutions at high Reynolds numbers are 
presented. The issues associated with the block-diagonal approximation of the system matrix 
used to build the parallelizable preconditioner are discussed. Finally, demonstration of the 
methodology for viscous three-dimensional, compressible, laminar flows is presented. 

2. GOVERNING EQUATIONS AND DISCRETIZATION 

The 3D compressiblc, variable property, Navier-Stokes equations can be written as 

conrinuity 

momentum 
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energy equation (constant total enthalpy) 

equation of state 
p I p  = RT. (4) 

Here p, u, p. T and I f o  denote the density, velocity vector, pressure, temperature and total 
enthalpy of the fluid respectively, while Re and p, are the Reynolds number and turbulent 
viscosity respectively. 

To overcome the well-known odd-even decoupling or checker-boarding effect in a simple 
manner, a pressure dissipation term AAp can be added to the continuity equation and (1) may be 
rewritten as 

aplat + v - (pu) = A A ~ ,  (1') 

where 1 is a small coefficient. For the numerical discretization of the system (l'H4) the Galerkin 
approach is taken, whereby the governing equations are satisfied in an average sense with respect 
to a weight function. The isoparametric finite element approach is then introduced with all 
variables and geometry described by trilinear shape functions.6 

For high Reynolds number flows turbulence is modelled in NS3D with the classical high 
Reynolds number k-c model. Near walls a special wall element, using logarithmic shape 
functions in the direction normal to the wall, is employed. 

After discretization, Newton linearization and assembly, one must solve a linear system of 
equations at  each Newton iteration for the four unknowns (pu, p). followed by an update of 
density. For turbulent flows the strategy would be to solve the Navier-Stokes equations for a 
few Newton iterations (say five) before each update of the turbulent viscosity through the k--E 
equations. 

3. SOLUTION PROCEDURE 

3. I The iterative equation solver 

The system of equations to be solved at each non-linear iteration is of the form 

AAX = -Rx, ( 5 )  

where AX = (Apu, Ap)T and R, = (R,,., RJT, with A indicating the change in a variable and 
R, being the vector of residuals of the equations calculated at  the previous iterative level. 

This system, here involving four variables for 3D flows, can be solved using direct or iterative 
methods. Direct methods have been successfully applied to the solution of the above system of 
 equation^,^ running at speeds of 2.3 GFLOPS on a Cray YMP-8 and currently running at 
speeds exceeding 10 GFLOPS on an NEC-SX3 with four processors. However, for a typical 
N = n x n x n grid where the bandwidth varies as n2, such direct methods require O(N2'33)  
operations for the factorization step and O(N' 67) operations for the substitution step, with 
storage requirements proportional to O(N' 67). Memory limitations on supercomputers therefore 
severely limit the application of such direct solvers in three-dimensional flow situations. 

Iterative methods for the Newton correction, on the other hand, can offer the advantage of 
qN) storage and, under certain conditions, preconditioned conjugate gradient (PCG) methods 
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can produce a machine-accurate solution in O(N' 17) operations. Because of their low storage 
requirement, linear growth and moderate operation count, iterative methods are therefore well 
adapted to engineering workstations which are characterized by large memory and fast scalar 
performance. These advantages must, however, be tempered by the sensitivity of iterative 
methods to matrix conditioning. 

Therefore, in order to improve the convergence of the iterative algorithm, the linear system 
in (5 )  is replaced by 

M - ' A A X  = -M-'R,, (6) 

where M is a preconditioning matrix approaching A, selected here on the basis of the incomplete 
factorization of A. 

For parallel processing, the matrix A is partitioned as explained in the next sections. It is also 
found that a reordering of its non-zero elements may have a great influence on its incomplete 
Gauss fac t~r iza t ion .~ '~  The natural ordering (associated with an I x J x K structured grid) is 
therefore compared with the minimum neighbouring (MINNEIG) orderingg*'' to assess the 
sensitivity of the solver to the ordering strategy. 

3.2. A hybrid artificial viscosity unloading scheme 

Because of the convective terms of the Navier-Stokes equations, the resulting linear system 
is ill-conditioned at high Reynolds numbers. On coarse grids, therefore, a streamline diffusion 
may be necessary on both sides of the equation system to stabilize the solution. This can be 
written in the symbolic form 

4 5  p)AX = - R A S  PI, (7) 

with R,y(4 PI = (R,&), Rp(i))T. 
In the present work a strategy is used whereby the iteration matrix A is computed with 

progressively lower values of the parameters I. and p, referred to as (ALHS, pLHs), but higher than 
those in the residual R, denoted by ORHS, pRHS). The residual, representing the physics of the 
problem, is therefore always computed with the smallest possible values of the parameters for 
which the outer Newton iteration converges. Thus the hybrid artificial viscosity algorithm can 
be described as follows. 

1. &t pRHS = pLHS and ARHs = lLm. 
2. X, = (pu,, po)T being given, compute IIR,II, with R, = (Rpb, RAT. Assemble the matrix 

Newton iteration 

3. Solve AXi = (Apui, Apt)' with a preconditioned iterative solver at each Newton iteration, 

A(ILHS, pLHS) and calculate the preconditioning matrix M. 

M - ' A().LHS, pLHS)AXi = - M - ' R,(lRHS, pRHS), 

by reducing the initial residual norm by 
4. Update X, 

till IIRx,+,Il/IIRwIl < lo-"; repeat from step 3 (m = 6 for the last cycle; otherwise m = 1). 
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5. Turbulence equations, when needed, are solved every five Newton iterations. 
6. Lower (IRHS, pRHS) and (ALHS, pLHs); repeat from step 2 if necessary. 

It is important to note that the hybrid artificial viscosity scheme has proven a key element 
in allowing large time steps, making the use of iterative methods viable for steady-state problems 
with the present scheme. 

4. PARALLELIZATION ASPECTS 

4.1. Matrix block partitioning 

A simple idea to build a parallelizable preconditioner is to approximate the Jacobian matrix 
A by a point- or block-diagonal one. However, this approximation cannot be done with impunity, 
because the preconditioner will lose robustness. To address this concern, a block-diagonal 
preconditioner suitable for a large class of problems is proposed. 

The strategy used is as follows. A coarse-grain structure of the system matrix A is calculated 
using only the connectivities between the nodes. Let n be the available number of processors, 
assumed not to be large, n = O(10). A regular partition of the coarse-grain structure of A into 
an n x n block matrix is carried out, i.e. consecutive unknowns are put in the same block by a 
sequential process. A local reordering of the nodes in each block is done, if desired, yielding a 
zero-non-zero structure adapted to a subsequent I LU(0) factorization.' After this preliminary 
step the complete structure of the system matrix A is calculated in the usual manner using the 
basis functions and the finite element grid defining the discretization scheme. Each block i ( i  = 1, 
. . . , n) has associated with it mi unknowns, where mi x N / n  and Zr= , mi = N. In general there 
is a slight difference in the sizes of the blocks because one does not send to different blocks the 
unknowns associated with the same node at a block boundary node. Therefore the system matrix 
A is seen as a block-structured one, 

A 2 j 9  A" 

where A' = [A,, Ai, . . . Ain] is the ith block row of A, i = 1, . . . n. Solely for the purpose of 
defining the parallelizable preconditioner, the system matrix A is approximated by a block- 
diagonal one 2 [ n ] ,  neglecting the non-zero coefficients outside the diagonal blocks. Thus this 
auxiliary matrix A[n]  is composed of n blockdiagonal submatrices of size mi x m,, 

A22 O ... 0 \ A, 0 ... 0 \ 
0 a* A[n] = ( :  . * . .  o , = \ o  

0 A n  0 Ann ... 0 ... 
(9) 

where Ai = Aii,  i = 1, . . . , n. If n = 1, one has A[1] = A, and if n = N, A [ N ]  would consist only 
of the diagonal coefficients of A. With this partition algorithm and maintaining n << N, the 
number of non-zero coefficients dropped from the original matrix to approximate it by a 
block-diagonal one is not significant for the test cases presented here. 

An incomplete factorization of the matrix A[n]  (i.e. of the individual submatrices A', 
i = 1, . . . , n) is performed by ignoring any fill-in produced during the factorization. The resulting 
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triangular matrices therefore have the same sparsity pattern as A[n],  but when multiplied 
together no longer yield 2 [ n ] .  The product of the triangular factors obtained, even if in practice 
it is never calculated explicitly, is denoted by Men], an effective, or approximate, preconditioning 
matrix. 

Since A [ n ]  is block-diagonal, one can calculate its ILU(0) factorization for all blocks 
simultaneously. As well as A[n] ,  M[n]  is block-diagonal, so one can solve in parallel the 
triangular systems associated with it. I t  is clear that the intermediate matrix 2 [ n ]  is overwritten 
by its (incomplete) triangular factors defining M [ n ] .  From the previous development, M [ n ]  
approaches A [ n ]  which in turn approximates A; thus M[n]  is an approximation of A, more or 
less efficient depending on the influence of the neglected coefficients. 

Figure 1 shows the structure of a banded matrix and Figure 2 the structure of the associated 
approximate matrix 2 [ n ]  given by this algorithm, with n = 4 and N = 31 14. From the banded 
structure of the matrix A it is clear that only some blocks on each row are non-zero: A and 
A,,  from A ' ;  A , , ,  A,, and A23 from A'; A , , ,  AJ3 and A34 from A 3 ;  A,, and A,, from A,. 
When the matrix is not banded but only sparse, a similar topology can sometimes be obtained 
by reordering the unknowns in an appropriate way. 

Another example is shown in Figures 3 and 4. The pattern of matrix A is shown in Figure 
3. Figure 4 shows the differences in structure between matrix A and the approximate matrix 
2[3] obtained by this algorithm. 

Figure 1. Structure of a banded matrix 

Figure 2. Partition into n = 4 blocks associated with the matrix of Figure 1 
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I ~ w a  part of A UPPa w ofA 

Figure 3. StNCIUre of a banded matrix 

Common lower and - 
upper s w u r e  of A, A 

Figure 4. Partition into n = 3 blocks associated with the matrix of Figure 3 

4.2. Matrix and vector storage 

In order to solve equations (6) by an iterative method, two matrices need to be stored: the 
matrix A defining the linear system to solve, and the preconditioning matrix mn] (in fact, one 
stores its triangular factors rather than mn] itself). Both matrices are stored in 32-bit precision 
in a condensed form using a skyline storage mode. The non-zero entries of matrix A = (a,,) are 
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stored in three real vectors, here called VD, VL and VU. The array V D  has the N diagonal 
coefficients of A, i.e. VD(i) = aiP The non-zero coefficients of the lower triangle of A are stored 
in VL, row by row, while the non-zero entries of the upper triangle of A are in VU, column by 
column. For the finite element method the zero-non-zero structure of A is symmetric, thus 
allowing one to define for VL and V U  the same integer pointer arrays for the position of VL's 
and VU's coefficients in A. Thus a vector K L  can be used to indicate the cumulated number of 
non-zero entries in a row and a vector KCOL the column number associated with them. In 
other words, 

VL(q) = aij o VU(q) = oji o [KL(i) < q c KL(i + 1)  and KCOYq) = j]. 

The length of VL, V U  and also KCOL is 

V A  = K Y N  + 1 )  - 1. (10) 

The total number of non-zero coefficients in A is therefore 2v, + N. 
The preconditioning matrix is stored in a similar way. First let VDP, VLP, VUP, KLP and 

KCOLP be initialized by VD, VL, VU, K L  and KCOL respectively. The parameter n being 
given, one can determine the regular partition into n blocks of A and neglect in the precondition- 
ing matrix the non-zero coefficients not included in the diagonal blocks. Thus one obtains a 
first approximation of A :  the n-block-diagonal matrix &n]. The vectors VLP, VUP, KLP and 
KCOLP are modified if necessary, destroying some entries from the original vectors. The number 
of non-zero coefficients, vpr of the lower and upper triangles of A"[n] decreases in general, and 
one has 

(1 1) 

with v, given by (10). 
At this stage the structure of the preconditioning matrix given by KLP and KCOLP will no 

longer be modified, but only the entries of it. For this an ILU(0) factorization of A[n]  is carried 
out, positioning the triangular and diagonal factors in the storage used by the matrix A[n]  itself. 

The knowledge of the partition of A into n blocks enables one to prepare matrices and vectors 
for parallel computation. Thus one can write the matrix A and the preconditioning matrix M[n] 
in n rows as 

v p  = KLP(N + 1 )  - 1 < v A ,  

where A'  and M' are mi x N matrices, mi z N/n and X;=, m, = N. As previously remarked, 
each row of A has a few non-zero blocks depending on its structure. When A is a banded matrix, 
each row probably has some zero blocks according to the bandwidth, as seen in Figure 1, and 
this fact is taken into account in the parallelization of the whole algorithm, especially on 
matrix-vector products. 

The matrices M' have by definition only one non-zero block, corresponding to the diagonal 
blocks: 
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An arbitrary vector x E RN can be written as 

x=(;)7 

where xi is a vector of order mi corresponding to A', i = I , .  . . n. 

Mi, and xi in processor i, i = 1 , .  . . , n. 
With the splitting of matrices A and wn] and vector x E WN described above, one stores A', 

4.3. Parallelization of the hybrid artificial viscosity algorithm 

Although the test cases presented here were run on a shared memory parallel computer, the 
aim of this work is to develop a general iterative algorithm that can also be implemented in 
parallel on distributed memory machines or on a network of workstations. Communications 
between processors has therefore to be considered. In this subsection the parallelization of the 
hybrid artificial viscosity algorithm is discussed, keeping in mind its general implementation on 
distributed memory machines with a moderate number of processors. The parallelization 
maintains the effectiveness of the original scheme owing to the algorithmic equivalence of the 
sequential and parallel versions. 

From the hybrid artificial viscosity algorithm described in a previous section and the CG-like 
Krylov subspace methods used in this paper, the main parallelization tasks are 

(i) the assembly of the matrix A 
(ii) the computation of the block-diagonal preconditioner 

(iii) the product of a matrix and a vector 
(iv) the inner product of two vectors. 

These aspects are described in the following subsections, but it should be remarked at the 
outset that the assembly of the matrix and all operations involving the preconditioning matrix 
do not need communication between processors. Only the matrix-vector products involving the 
full matrix A require limited communication. 

4.3.1. Assembly of the matrix A .  At each time that step 2 of the hybrid artificial viscosity 
scheme is repeated, one needs to assemble the matrix A. For each row A' of A this is done by 
adding the contribution of each element of the finite element grid. The parallelization of this 
step is easily achieved, considering on each processor all the elements having at least one 
unknown associated with the current row. It is clear that some of the elements will be considered 
by more than one processor at  the same time, but in general this duplicate work is negligible 
compared with the overall work done by each processor. 

4.3.2. Parallelization of the preconditioner. When the matrix A is updated, the approximate 
matrix A[n]  and consequently the preconditioning matrix wn] need to be modified. This occurs 
at  step 2 of the hybrid artificial viscosity scheme. Thus it is important to parallelize the ILU(0) 
factorization of A[n] in order to minimize the CPU time used in this step. From the definition 
of A"[n] by (9) i t  is clear that the ith processor (1 < i < n) needs only the diagonal block Ai in 
order to produce the lower and upper factors defining Mi.  In other words, one simultaneously 
carries out the ILU(0) factorization of all diagonal blocks of a [ n ] ,  obtaining the whole ILU(0) 
factorization of a [ n ]  without communication between the processors. 
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The same idea is used to solve linear systems associated with M[n]  (i.e. to multiply a vector 
by M [ n ] - ' ) ,  the main task done with the preconditioning matrix. For a given vector v the 
preconditioning step consists of solving for w the linear system associated with M[n] ,  

W n ] w  = v. 

Since the matrix m n ]  is given by (1  2) and the vectors w and v are given by (1 3), the parallelization 
is automatic. The ith processor (i  = 1, . . . , n) solves a linear system or order mi, 

M ' W '  = vi, (14) 

and the solution of w is obtained without communication between the processors as 

In fact, the blocks Mi ( i  = 1,. . . , n) are never calculated. After performing the ILU(0) 
factorization of Ai, the lower and upper triangular factors defining M i  are stored as 

Mi = LiUi, 

Thus the solution of (14) is no more than the solution of two triangular systems 

i = 1 ,..., n. 

L,y' = v', U'Wi = y'. 

4.3.3. Parullelization of u matrix-vector product. Let y = Ax, with A given by (8) and y 
and x given by (13). As already mentioned the matrix A has in general more than one non-zero 
block per row. Thus, to obtain y i ,  processor i needs to know XJ from the neighbouring processors, 

y' = A' 

and corresponding communication needs to be established by the system. However, owing to 
the sparsity of the matrix A, this communication is of a limited nature on the order of the 
bandwidth. 

On the other hand, the parallelization of the matrix-vector product for a distributed memory 
machine can be described as follows: 

(i) upper triangle multiply: needs local xi, updates part of y j  of previous processor (j < i )  
(ii) lower triangle multiply: needs part of xJ from previous processor ( j  < i), updates local y' 

(iii) diagonal multiply: needs local xi, updated local yi. 

4.3.4. Parallelization of inner product of vectors. The calculation of the inner product of two 
vectors x and y is equal to the sum of the inner products of their corresponding components 
and therefore can easily be parallelized in the usual way: 
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The matrix-vector products and the inner product of vectors are the crucial steps for coupling 
the equations between processors. Of course, communication needs to be arranged in the two 
cases. First, one needs to communicate between adjacent processors a vector of the order of the 
bandwidth and, second, communication is needed only to add the partial results from each 
processor (one scalar per processor at the end of the operation). 

5. NUMERICAL RESULTS 

The computations are done in @-bit precision on a Silicon Graphics IRIS 240 GTX with eight 
25 MHz processors at the Concordia CFD Lab. The dimension of the Krylov space is 60 for 
all GMRES test cases. In order to compare the CGS and GMRES solvers, one iteration at each 
matrix vector product is counted. For the GMRES method the required precision for the 
solver is attained in most cases before completing a Krylov iteration. In all test cases only one 
step of the hybrid artificial viscosity algorithm is carried out. 

The tests are done on two grids of a 90" square bend (inlet area h2; length upstream of 
bend, 5h; length downstream of bend, 2h; radius of bend, 2h) .  Grid 1 has 8550 nodes and grid 
2 has 15,300 nodes. A finite element surface grid for the bend is shown in Figure 5. The total 
number of equations considered is 27,084 for grid 1 and 49,044 for grid 2 .  The associated system 
matrices have about 2.5 x lo6 and 4.6 x lo6 non-zero coefficients respectively stored in 32-bit 

Figure 5 .  Geometry and surface grid on 90' bend 
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precision. In the validation of the approach only laminar cases have been considered up to now. 
The approach is tested out at Re = 100 and 1O00. In the latter case one solves at Re = 800 as an 
initial solution. 

The title of all the following figures is ‘Convergence history of the Newton algorithm with 
different preconditioners’. For each one the ordering (natural or MINNEIG), the solver (CGS 
or GMRES), the test case (Re = 100 or 1OOO) and the number of nodes (8550 or 15,300 nodes) 
used are indicated. 

The numbers written beside each curve indicate how many blocks were used in the definition 
of the preconditioning matrix. When the term ‘pfa’ (parallel FORTRAN accelerator) appears, 
the corresponding curve was obtained using a number of processors equal to the number of 
blocks. The remaining curves were obtained in a sequential manner using only one processor 
of the computer. 

The unit used on the CPU axis of all these figures is seconds. 
Figures 6-11 show the convergence histories of the Newton algorithm for grid 1 using 

different orderings of equations and the two iterative solvers. In Figures 12-15 the correspond- 
ing results on grid 2 are shown. Figures 6 9 ,  12 and 13 correspond to the first test case (Re = loo), 
while Figures 10, 11, 14 and 15 show the results obtained for Re = 1O00, the second test case. 

The results presented in Figures 6-15 concern the solver part of the hybrid artificial viscosity 
scheme only. In Tables 1-111 some timings are presented concerning the entire code, as well as 
the solver part. The solver speed-up is affected by two factors: the parallel efficiency of the code 
and the degradation of the non-linear Newton convergence because of the approximation of the 
decomposition of A by M[n]. In the following discussion the word ‘resp.’ in parentheses signifies 
‘respectively’. 

Figures 6 and 7 show that with the original ordering of equations and the CGS algorithm 
the use of M[8]  can accelerate the solution step 2.6 times, while with the MINNEIG ordering 
and the CGS solver m 8 ]  is 2.9 times faster than M[1]. However, if one compares the total 
time to obtain the final solution, including assembly and factorization of the preconditioning 
matrix (not shown in Figures 6-15), M[8] with the MINNEIG ordering (resp. natural ordering) 
and CGS solver is 4.6 (resp. 3.0) times faster than M[1] with the same ordering of unknowns. 
The results obtained with the GMRES algorithm are similar but a little slower. 

Figures 10 and 11 show the convergence of the Newton algorithm for the second test case 
(Re = 10oO) on grid 1 with the GMRES algorithm. This test case is more difficult than the 
previous one and it can be seen that the new block preconditioners work well. From these 
figures M [ 8 ]  with the MINNEIG ordering (resp. natural ordering) is 4.0 (resp. 2.0) times faster 
than M[lJ. Considering the total CPU time (and not only the CPU time spent in the solver step), 
m 8 ]  with the MINNEIG ordering (resp. natural ordering) is 4.6 (resp. 2.7) times faster than 

The results obtained using grid 2 are similar. Figure 13 (resp. Figure 15) shows that for the 
first test case Re = 100 (resp. Re = 1OOO) the preconditioner M [ 8 ]  with the MINNEIG 
ordering and CGS algorithm is 4.6 (resp. 3.7) times faster than m l ] .  Considering the total CPU 
time, the previous preconditioner is 6.1 (resp. 4.6) times faster than M l ] .  

Tables I and I1 present the results obtained on grids 1 and 2 respectively with the parallelized 
code for all the test cases. For each preconditioner M [ n ]  the total execution time is indicated 
(including Jacobian construction, ILU(0) factorization of its diagonal blocks and matrix solution) 
and, in parentheses, the time spent in the solution of the linear system associated with the Newton 
iteration. To facilitate comparison, a different normalizing factor is used for the execution time 
in each test problem. In all cases the normalization factor is given by the time spent by MCI]. 

w 1 1 .  
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CPU 

Figure 6. Natural ordering, CGS linear solver. Re = 100, 8530 nodes 

12000. 

Figure 7. MINNEIG ordering, CGS linear solver. Re = 100, 8550 nodes 
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CPU 

Figure 8. Natural ordering, GMRES linear solver. Re = 100, 8550 nodes 

0.00 

__ Block = 1 
-0.60- ___ Block = 2 

- Block = 4 
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Figure 10. Natural ordering GMRES linear solver. Re = 1oOO. 8550 nodes 

-2.20 

-3.24 
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Figure 11. MINNEIG ordering, GMRES linear solver. Re = IOOO. 8550 nodes 
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0.00 

Figure 12. Natural ordering, CGS linear solver. Re = 100, 15,300 nodes 
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Figure 13. MINNEIG ordering, CGS linear solver. Re = 100, 15.300 nodes 
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Figure 14. Natural ordering, CGS linear solver. Re = 1000, 15,300 nodes 
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Figure 15. MlNNElG ordering, CGS linear solver. Re = 1000, 15.300 nodes 
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Table I. Normalized total execution time (and normalized time spent by the iterative solvers) 
for various test cases on grid 1 

Re Solver Ordering MCll MC21 w 4 1  "I 
100 CGS Natural 1.0 (1.0) 0-55 (058) 047 (0.54) 0.33 (039) 

MINNEIG 1.0 (1.0) 0.63 (0.78) 0.41 (0.58) 0.22 (0.35) 
100 GMRES Natural 1.0 (1.0) 0.72 (0.78) 0 5 3  (0.63) 042 (0.54) 

MINNEIG 1.0 (1.0) 0.81 (1.03) 0.51 (0.72) 0.38 (0.58) 
1OOO GMRES Natural 1.0 (1.0) Failed* 045 (052) 0 3 7  (049) 

MINNEIG 1.0 (1.0) 0.68 (0.76) 039 (0.44) 022 (0.25) 

Table 11. Normalized total execution time (and normalized time spent by the iterative solvers) 
for various test cases on grid 2 

Re Solver Ordering MCII MC21 ~ ~ 4 1  MC81 
~~~ ~ ~ ~ ~ ~ ~~~ 

100 CGS Natural 1.0 (1.0) 0.60 (0.68) 0.45 (0.57) 0.33 (0.45) 
MlNNElG 1.0 (1.0) 0.49 (053) 026 (0.28) 0.16 (022) 

lo00 GMRES Natural 1.0 (1.0) 0.63 (0.68) 0.35 (0.38) 0.36 (0.43) 
MINNEIG 1.0 (1.0) 0.63 (0.68) 634 (0.43) 022 (0.27) 

Table Ill .  Total number of seconds and normalized time spent by the iterative solvers for Re = 100 on 
grid 1 

CGS GMRES CGS/GMRES 

Preconditioner Natural MINNEIG Natural MlNNElG Natural MINNEIG 
___________ ~~~ ~ 

6120 3580 5130 2950 1.19 1.21 
0.8 1 12800 5570 10500 6850 1.22 

16000 1 lo00 13500 11600 1.19 095 

MC11 
MC81 
W161 

The results associated with the preconditioner M [ n ]  were obtained using n processors of the 
computer. 

A comment is necessary to qualify the 'failure' of GMRES preconditioned by M[2] with 
the natural ordering for grid 1 and Re = 1000. In fact, the algorithm converges but does not 
attain the prescribed precision within the maximum number of iterations allowed. The curve of 
convergence is also rather irregular. This phenomenon is all the more surprising since the 
algorithm works well when preconditioned by M[4] and M[8]. However, it must be kept in 
mind that the matrices 2 [ n ]  are constructed independently in a sequential manner and it is not 
guaranteed that each block of nodes of 1[2] contains exactly two blocks of nodes from A[4] 
and so on. The only thing that can be ensured is that the first group of nodes of 1[8] is inside 
the first one of A[4] and the latter is in the first group of nodes of 4 2 3 .  Thus it is possible that 
in this particular test some important connectivities were preserved on 2[4] and 2181 but were 
lost on 2[2], producing its loss of efficiency. This phenomenon, however, was isolated and did 
not repeat itself with the other test cases. 
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From Figures 6 8  one can compare the relative efficiency of the CGS and GMRES algorithms 
at Re = 100 on grid 1. The results are summarized in Table 111. The CPU times spent in 
solving this test with the natural and MINNEIG orderings are compared using M [ 1 ] .  M[8] 
and M[16] as preconditioners. The first column shows the number of seconds spent by CGS in 
solving the Newton algorithm, the second column the CPU time associated with GMRES and 
the third column the relative speed of CGS with respect to GMRES. All the results presented 
in this table were obtained using only one processor of the computer. To facilitate comparison, 
the time spent by GMRES is taken as a normalization factor in each case, in the third column. 
One can see that GMRES is faster than CGS when the natural ordering is used and even 
sometimes when the MINNEIG ordering is used. 

The relative importance of choosing a good ordering of unknowns is illustrated. For Re = 
100 it is found that for grid 1, M[1] + MINNEIG ordering is 1.7 times faster than M[ 13 +natural 
ordering for solving the problem with both GMRES and CGS algorithms. At the same Reynolds 
number for grid 2, M[ 13 + MINNEIG ordering with the CGS algorithm is 1.1 times faster than 
M[l]+natural ordering. For R e =  lo00 M l ] + M I N N E I G  ordering is 1.2 times faster than 
M[l] +natural ordering using the GMRES algorithm on grid 1 and the CGS algorithm on grid 
2. It can therefore be concluded that even for structured grids an efficient reordering of the 
nodes produces an interesting reduction in solution time. For a general (unstructured) grid, 
reordering of the unknowns is expected to have a more important effect. 

6. CONCLUSIONS 

In this paper a parallelizable hybrid artificial viscosity scheme applied to solve viscous 
compressible 3D flows using finite element methods is presented. A good parallelizable block- 
diagonal preconditioner is developed in order to accelerate the solution of the linear system 
associated with the Jacobian matrix at each Newton iteration. The preconditioner presented in 
this paper depends only on the matrix defining the linear system to solve. It could be interesting 
to apply it to other linear problems arising from computational fluid dynamics. To build the 
preconditioning matrix M[n], the system matrix A is partitioned into n blocks using a simple 
matrix-structure-dependent method, n being the number of available processors. In contrast with 
the more complex domain decomposition methods, parallelization is achieved by simply 
restricting the overall system matrix to its diagonal blocks and only for the purpose of the 
preconditioner. 

In the numerical tests it has been shown that for a moderate number of processors (n being 
O(10)) it is possible to choose an appropriate ordering algorithm giving a good rate of 
convergence of both preconditioned GMRES and CGS algorithms. Even after accounting for 
the loss of efficiency of the new preconditioner wn] when n > 1 in comparison with M [ I ] ,  it 
is shown that it is possible to converge up to six times faster on an eight-processor system with 
M [ 8 ]  than on a single processor using the usual ILU(0) factorization of the matrix A = M[1]. 
This speed, coupled with the memory storage advantages of iterative methods, makes them 
competitive on parallel workstations with direct methods on supercomputers. 
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